General Grid Interface
Theoretical Basis and Implementation

Hrvoje Jasak
Wikki Ltd, United Kingdom

h.jasak@wikki.co.uk
Objective

- Review implementation of the General Grid Interface (GGI) in OpenFOAM and its use in turbomachinery applications

Topics

- Background: sliding mesh components
- General Grid Interface: design rationale
- Numerical considerations: discretising GGI interface
- GGI interpolation and weight calculation
- Derived forms: cyclic GGI and partial overlap GGI
- Code components
- Parallelisation of GGI interfaces
- Preparing a mesh for GGI
- Example of use
- Summary
Handling Sliding Mesh Interfaces

- Turbomachinery applications typically involve components in relative motion: need to handle a set of separate regions as one contiguous mesh.
- Components move relative to each other, but at each time instance create a single contiguous region: “attaching and detaching” the mesh during simulation.
- This is a subset of **topological mesh changes**, already implemented in OpenFOAM: do we need anything further?
- Unfortunately, topological changes do not satisfy all our needs.
Sliding Interface

Topological Mesh Changes: Sliding Interface

- Sliding interface topology modifier
 - Defined by a master and slave surfaces
 - As surfaces move relative to each other, perform mesh cutting operations and replace original faces with facets
 - Re-assemble mesh connectivity on all cells and faces touching the sliding surface: fully connected 3-D mesh

- Polyhedral mesh support in OpenFOAM facilitates topological changes
- Once the mesh is complete, there is **no further impact in the code!**
- Connectivity across interface changes with relative motion
GGI Design Rationale

GGI Interface in Turbomachinery

- Apart from “fully overlapped” cases, turbomachinery meshes contain similar features that should employ identical methodology, but are not quite the same
 - Non-matching cyclics for a single rotor passage
 - Partial overlap for different rotor-stator pitch
 - Mixing plane: perform averaging instead of coupling directly
- Component coupling requires data manipulation (copy, transform, average)
- In such cases, the behaviour is closer to a coupled boundary condition, but the numerics is similar to sliding interface
- Objective: mimic behaviour of sliding interface without changing the mesh
GGI Discretisation

FVM Discretisation on a GGI Interface

- Review discretisation of convection and diffusion when faces are replaced; volumetric integral terms are not affected
- **Convection operator** splits into a sum of face flux integrals

\[
\int_V \nabla \cdot (\phi u) \, dV = \int_S \phi (n \cdot u) \, dS = \sum_f \phi_f (s_f \cdot u_f) = \sum_f \phi_f F
\]

where \(\phi_f \) is the face value of \(\phi \) and \(F = s_f \cdot u_f \) is the **face flux**

- **Diffusion operator** captures the gradient transport

\[
\int_S \gamma (n \cdot \nabla \phi) \, dS = \sum_f \int_{S_f} \gamma (n \cdot \nabla \phi) \, dS = \sum_f \gamma_f s_f \cdot (\nabla \phi)_f
\]

- Face terms: interpolated value and face gradient

\[
\phi_f = f_x \phi_P + (1 - f_x) \phi_N, \quad s_f \cdot (\nabla \phi)_f = |s_f| \frac{\phi_N - \phi_P}{|d_f|}
\]
GGI Discretisation

FVM Discretisation on a GGI Interface

- When cutting is performed, total face area is replaced by facets
- Discretisation on the interface can be rewritten as a sum of facet operations. Inverting the loop, we can introduce shadow neighbour values ϕ_s^N values for the in front of the face, creating the effect as if the interface is integrally matched

$$
\phi_s^N = \sum_t w_t \phi_t
$$

where t denotes a selection of cell/face values on the “other side”

- Consistency conditions: simple averaging is not flux-conservative
 - Area of original face must be equal to sum of facet areas replacing it

$$
\sum_t w_t = 1 \quad \text{for all faces on both sides}
$$

 - If face A touches face B, perceived facet area must be the same

$$
w_{A \rightarrow B}S_A = w_{B \rightarrow A}S_B
$$
GGI Interpolation

• Role of GGI interpolation is to calculate shadow interpolation weights

• Idea 1: form a matrix equation for weights and solve: does not work (HJ)

• Idea 2: use geometrical cutting as in sliding interface and calculate weights as per original definition. Also provides the addressing

\[w_t = \frac{S_{facet}}{S} \]

GGI Intersection Algorithm

• Developed and implemented by Martin Beaudoin, Hydro Quebec

• Components
 1. Quick reject in 3-D: Axis-Aligned Bounding Box
 2. Projection into common plane
 3. Quick reject in 2-D: Separating Axis Theorem
 4. Point in polygon detection: Horner-Agathos algorithm
 5. Polygon intersection: Sutherland-Hodgman clipping algorithm

• Result: facet area, GGI addressing and weights
Derived Forms of GGI

Extending Basic GGI Algorithm

- GGI operates as a coupled patch field condition: interpolate shadow and update

- **Cyclic GGI**
 - Create transformed surface of the shadow patch and calculate weights
 - Transform scalar/vector/tensor data according to rank
 - Use GGI interpolation on transformed shadow data and update as usual

- **Partial Overlap GGI**
 - Create transformed surface of the shadow patch by copying the geometry multiple times to achieve full overlap and calculate weights
 - Transform scalar/vector/tensor data according to rank and expand over number of copies
 - Use GGI interpolation on transformed shadow data and update as usual

- GGI interpolation is useful beyond GGI: provides flux conservative and function-monotonic interpolation
 - Conjugate heat transfer with non-matching solid-fluid boundaries
 - Fluid-structure interaction: force-conservative interpolation
GGI Code Components

Implementation of GGI in OpenFOAM

- **Interpolation and geometry**
 - Basic algorithms: Horman-Agathos, Sutherland-Hodgman
 - Templated GGI interpolation, abstracting patch type
 - Instantiated interpolation for stand-alone patch and `polyPatch`

- **GGI patch and discretisation** (identical for cyclic GGI and partial overlap)
 - Mesh patch with interpolation: `ggIPolyPatch`, `ggIPointPatch`
 - Matrix support: `ggILduInterface`, `ggILduInterfaceField`
 - Coupled FV patch with discretisation support `ggIFvPatch` and `ggIFvPatchField`: constrained patch
 - Special support for AMG coarsening, to be done consistently on all levels: `processorGAMGInterface` and `processorGAMGInterfaceField`
Parallelisation of GGI

- In parallel, sliding GGI changes processor-to-processor connectivity
- Trouble in weights calculation and in scheduling of processor-to-processor communications: dangerous or inefficient
- Solution: **Global sync of GGI data**
 - Complete sliding surface must be present on all CPUs: decomposition
 - In each evaluation, gather-scatter of shadow data for complete interface
 - Evaluate GGI as usual: local patch only addresses a part of sliding surface
Prepare for GGI

Definition of a GGI Patch and Field

- Build the mesh in the usual way, with disconnected components
- Prepare face zone for master and slave surface

```
wooster*685-> setSet
faceSet insideZone new patchToFace insideSlider
faceSet outsideZone new patchToFace outsideSlider
quit

wooster*685-> setsToZones -noFlipMap
```

- **Boundary file definition:** `constant/polyMesh/boundary`

  ```
  insideSlider
  {
    type ggi;
    nFaces 36;
    startFace 1192;
    shadowPatch outsideSlider;
    zone insideZone;
    bridgeOverlap false;
  }

  outsideSlider
  {
    type ggi;
    nFaces 36;
    startFace 1228;
    shadowPatch insideSlider;
    zone outsideZone;
    bridgeOverlap false;
  }
  ```
Prepare for GGI

Field Definition

- GGI is a constrained condition: forces patch field type

```cpp
boundaryField
{
    insideSlider
    {
        type ggi;
    }
    ...
}
```

- Parallel decomposition: GGI patch surface must be present on all CPUs in its entirety

- Decomposition dictionary: new entry for global face zones

```cpp
globalFaceZones ( insideZone outsideZone );
```

- Some care is required in choice of linear equation solvers
Simple Examples of GGI Interfaces in Use

- Partial overlap rotor-stator interaction
- Blade passage: cyclic GGI interface
- Water jet, start-up transient GGI rotor-stator interface

NUMAP-FOAM Summer School, Zagreb 2-15 Sep 2009

General Grid Interface – p. 14
Simple Examples

Capsizing Body with Topological Changes or GGI

- Full capsize of a floating body cannot be handled without topology change
- Mesh motion is decomposed into translational and rotational component
 - External mesh performs only translational motion
 - Rotation on capsize accommodated by a GGI interface
- Automatic motion solver handles the decomposition, based on 6-DOF solution
- Mesh inside of the sphere is preserved: boundary layer resolution
- Precise handling of GGI interface is essential: boundedness and mass conservation for the VOF variable must be preserved
Summary

• GGI interface allows coupling of mesh components without the need for topological mesh changes
• GGI discretisation is identical to sliding interface with mesh cutting
• Interpolation weights calculated using polygon clipping
• Derived forms: cyclic GGI and partial overlap re-use interpolation code
• **Parallelisation**: complete GGI surface present on all CPUs. Added option of preserving faces in decomposition without attached cells
• Recent updates for communication scheduling and improved parallel scaling
• The code is complete and ready for use